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In this paper we consider the numerical solution of hyperbolic systems of partial 
differential equations which are in quasi-conservation form. A basic Lax-Wendroff- 
like scheme is developed. In order to treat problems with discontinuous solutions an 
iterative procedure is proposed. The stability and convergence of the various schemes 
are investigated. It is shown that it is possible to have time steps considerably larger 
than those allowed according to the CFL (Courant-Friedricks-Levy) criterion. 

The method is then applied to the case of converging-diverging cylindrical shock 
waves. Detailed behavior near the axis at the time of shock coalescence is obtained, as 
well as the general flow field at various times. The results are compared with Payne [4] 
and the differences are pointed out. 

The computations reported herein were carried out on the CDC-3400 computer at 
the Tel-Aviv University computation center. 

1. INTRODUCTION 

In general the hydrodynamic-time-dependent inviscid, compressible flow 
equations can be written as a hyperbolic system of partial differential equations 
cast in conservation form [l]. That this is so for general curvilinear coordinates has 
been shown by Anderson et al. [2]. There are, however, cases of physical interest 
which cannot be put into conservation form. For example the nonlinear shallow 
fluid flow problem [3]l, and in general problems of cylindrical or spherical sym- 
metry. A particular case is that of the problem of converging shock waves. This 
problem was treated by Payne [4] and serves as a good test case for the methods 
developed herein. 

* This Research has been sponsored in part by the Air Force Office of Scientific Research 
(NAM) through the European Office of Aerospace Research, AFSC, United States Air Force, 
under contract F61052-69-GOO41. 

1 I&he paper by Houghton and Kasahara a particular problem is formulated and analyzed. 
In the present work we begin by formulating and analyzing the general case and then apply the 
results to a specific physical case. 
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We are interested then in the numerical integration of hyperbolic systems of the 
form 

wt + Pvvlz = ~(x; w 0.1) 
where the independent variables are x and t; W is a vector of k components 
WI ,***, W,) which are unknown scalar functions of x and t. F = F(W) = 
FW, ,..-, W,) and zj = $(W, x) = #(WI ,..., W, ; x) are also k dimensional 
vectors. We say that Eq. (1.1) is in a “quasi-conservation” form, because the 
R.H.S. does not contain any derivatives. If + did depend explicitly on t we could 
with very little difficulty extend the results to be given in this work. 

2. DIFFERENCE METHODS FOR QUASI-CONSERVATIVE HYPERBOLIC SYSTEMS 

2a. The Basic Diference Scheme 

Consider the quasilinear inhomogeneous hyperbolic system of k partial differen- 
tial equations given in the form 

(2.1) 

where A is a k x k matrix whose components are functions of (WI ,..., W,). A is 
the Jacobian of F( W) in (1.1) with respect to the vector W, i.e., Aii = aF,/a Wj . The 
hyperbolicity of the system is assured by requiring the eigenvalues of A to be real. 
We are interested in obtaining a solution valid in the region 

with appropriate initial and boundary conditions assuming, of course, that the 
problem is well posed. 

The difference scheme which approximates (2.1) is developed in the manner of 
Lax and Wendroff [l], i.e., it is based upon a Taylor series of Win time. Assuming 
W to possess derivatives to third order in 9 we have 

WY W(x, t + At) = W(x, t) + At * w, + 21 . wtt + OU031. (2.2) 

The time derivatives may be represented as space derivatives by using (1.1) and 
(2.1). With simple manipulations, Eq. (2.2) becomes 

W(x, t + At) = W(x, t) - (At) . Fz + q (AF,), 

+ At I# + + [A - W,l/ + WAt)31 (2.3) 
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We see that when # = 0 we get back the Lax-Wendroff scheme for the strictly 
conservation-form case. For the difference equation corresponding to (2.3) we 
take 

where 

W;+’ = Wj” + QWj” + (At) &Wj”, (2.4) 

Wjn 3 W(j Ax, n At) = W(xj , t,), (2.5) 

Q Wj” = - ; [F;+, - FL11 + ; [Aj”,,,,(F;+, - Fjn) - Ain_l,2(Fjn - r;jnl)], (2.6) 

& Wj” = *i” + ($) <#t>j” - a [(A#X+l - W,Kl, (2.7) 

with 
jj=dt. 

Ax ’ M W>lY = r, 

and where the m-th component of & is easily found to be 

Note that to second order accuracy, 

&L,z = &J’j!tm> = A[i(Wj”+, + %“)I. (2.9) 

Since (2.6) is the Lax-Wendroff difference operator, accurate to second order, and 
since (2.7) is built up of centered differences only, it follows that our difference 
scheme (2.4) is of second order accuracy. 

As usual, the stability of the difference scheme can be investigated only in the 
linear sense. To do this we assume that A and # are locally constant and under 
these circumstances we may rewrite (2.4) as follows: 

W,“+l= SWf” + At+, 

where S is the linear Lax-Wendroff operator, given by 

(2.10) 

SW,” = Wj” - q (Wj”,, - wa + y (Wi”,, - 2wjn + W,“_l). (2.11) 

Note that (2.10) has the form of an affine transformation. Its stability can be proven 
in a manner very similar to that by which Kreiss [6] and Strang [7] prove 
the stability of a scheme similar to (2.10) but with At+ replaced by AtH(W,“) with 
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H being a bounded linear operator. The proof in the present case is straightfoward 
and is omitted here. 

To summarize, the linear stability of (2.4) is assured by meeting the CFL criterion 
(which is satisfied by the Lax-Wendroff scheme) 

At 1 
dx G p(A) ’ (2.12) 

where p(A) is the spectral radius of A. The convergence of the difference scheme can 
be easily demonstrated by using the methods delineated by Richtmyer and Morton 
PI. 

2b. Iterative D@erence Schemes 

A difference scheme such as (2.4), or others which are in use, are quite satis- 
factory from the numerical point of view when one deals with problems possessing 
smooth solutions. When, however, the solution contains discontinuities the numer- 
ical procedure yields oscillations which can be quite strong in the neighborhood of 
a discontinuity such as that representing a shock wave. These post-shock oscilla- 
tions may in time distort the true solution. There are several methods to overcome 
this phenomenon. Most of them consist of adding certain terms (often called 
artificial viscosity [l, 81) to the basic scheme. These terms often reduce the 
amplitude and duration of the nonlinear instabilities which we called post-shock 
oscillations. A different approach was taken by Abarbanel and Zwas [5] and yielded, 
in the case of slab symmetry, smooth monotonic shock profiles for a large range 
of the controlling physical parameters. It will be shown later that a modification of 
this iterative scheme will yield good results also in the present quasi-conservation 
case. 

To delineate the method we start by considering the following general explicit 
difference scheme: 

w,“” = (1 + C) Wj” = Wj” + CW,“, (2.13) 

where C is any difference operator accurate at least to order two. For example in 
in our case of (2.4) C = Q + Atg. Next examine the following explicit-implicit 
difference equation 

w,“” = Wj” $ (1 - t?) CWj” + ecw,“” 
(2.14) 

= Wj” + CWj” f e[cwj”+l - CW,“], 

where 13 is a real number. When 8 = 0 we get back the basic difference Eq. (2.13). 
Based on (2.14) we introduce the notion of an iterative scheme in which the results 
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of (s - 1) iterations are designated by W la*s. The iterated vector W satisfies the 
following recursion relation 

W n+1*s+1 = Wj” + [(l - (3) CW,” + ,,w;+1.q 
(2.15) 

= Wj” + CWj” + e[cw;+l*s - CW,“] 

where s = 0, l,..., I - 1 and 

wy1.Q 3 Wj”* (2.16) 

Notice that when I = 1 or s = 0 (i.e., no iteration) the result reverts back to 
the basic scheme (2.13). It should be remarked here that (2.15) differs somewhat 
from the scheme proposed in Ref. [5]. There the corresponding equation reads as 
follows: 

W n+l.s+l = WY” + C[(l - e> Wj” + ew;+1*q. (2.17) 

When C is a linear difference operator, (2.15) and (2.17) are identical. In general, 
however, they are not. We shall in what follows refer to (2.15) and (2.17), respec- 
tively, as the “external” and “internal” iterative schemes. The names allude to 
positioning of 0 with respect to the operator C. With regard to the stability and 
convergence analyses of the iterative method it does not matter whether we use the 
“external” or “internal” scheme. This is so because in order to carry out the 
analyses, we have to assume local constancy of the operator C. In our specific case 
C = Q + At&. But under the assumptions of local constancy 

CWy = (S - Z) WJ’ + Ata,4 

(see Eqs. (2.4) and (2.10)). While the operator C under these restrictions is not a 
linear operation (but an affine one) it can be shown that it still satisfies the relation 

CU - e) wp + ew;+y = (1 - 0) CW,~ + ecwjn+l.s. (2.18) 

Specifically we consider the linear stability of the scheme 

w,“” = Wj” + SWj” + At+, (2.19) 

where the linear operator S = S - I with S given by (2.11) and #I is assumed a 
constant vector. It follows from (2.15) (or (2.17)) that the iterative procedure here 
takes the form 

wjn+lss+l = wp + s[e wjn+l,s + (1 - e) Wj”] + At& (2.20) 
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If we designate the final result after performing I iterations by ~;+l*’ = $+l, and 
use an analysis very similar to that of Ref. [5], then our scheme becomes 

,;+1 _ w;+l.z = 
1 + (1 + l-4 i QT 

I 
win + At* (2.21) 

r=l 

where the linear operator Q is defined by 

andfis a vector function of the correct dimension. The linear stability of (2.21) is 
assured with the stability of the operator 1 + (1 + p) CL=, P. The corresponding 
amplification matrix is given by (see Ref. [5]) 

G = G(At, co) = 1 + (1 + r-l> i (D + iB)‘, (2.23) 
r-1 

where the matrices D and B are 

D = -2P8Aa sin2 4, 

B = --MA sin 24, 

with 4 = WAX/%; w being the wave number. 
By the spectral mapping theorem the eigenvalues of G are given by 

g = 1 + (1 + p) c (d + ib) 
9-4 

= -p + (1 + CL> i (d + iv (2.24) 
9-O 

= -p + (1 + p)[l - (d + a”+‘]/[1 - (d + WI, 

where, from the definitions of D and B, 

d = -2hVa2 sin2 4, 

b = -Ma sin 24, 
(2.25) 

and a is the corresponding eigenvalue of A. The condition ] g ] < 1 cannot be 
solved analytically except for special values of $ and II. These special cases served 
as a check on the numerical solution of 1 R.H.S. of (2.24)] < 1. The results may be 
summarized as follows: 
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(1) 0 < O(p < 0). The scheme (2.21), is unconditionally unstable. 
(2) 8 = 0; 0 > lb < 0); 4 < 8 < I(6’ < p < 1). In all of these cases the 

stability conditions are bounded by the CFL one. In fact a stability condition as 
good as CFL (i.e., h < l/p(A)) is achieved only for 13 = l/2, and 8 = 0. (In the 
latter case, scheme (2.21) reverts back to the Lax-Wendroff operator). 

(3) 0 < 19 < #‘JJ > 1). In this range it is quite complicated to draw con- 
clusions from the numerical solution of (2.24); however, one also gets the most 
advantageous results in this range. First recall that as B = l/2 or 0 + 0 we return 
to the CFL case. Again we distinguish between two cases: 

(9 When I is even there exists 0 < e,(Z) < $ such that in the interval 
[e,(Z) < B < l/2] the stability criterion is 

A = (&/Llx) < l/@(A) V%). (2.26) 

As Z+ c0, e,(z)++ so that the interval contracts monotonically with 1. In the 
remaining interval (0 < 8 < e,(Z)) the stability criterion is more restricted and is 
given by 

x = (4.w G w, mwi, (2.27) 
i d z(e, I) G i/z/ze;;. 

(ii) When I is odd, we have 

A = ww G w, w~41, (2.28) 
with 

i G qe, I) d i/dZi 

The signiticance of case (3i) can be seen from the fact that if Z = 2, then 
0.165 < 0, < 0.175; if Z = 4, 0.2 < 8, < 0.3, etc. Thus if we take Z = 2 and 
choose e = 0.2 the stability condition becomes 

h = @It/Ax) < [l/p(A) d/0.4] = [1.58/p(A)]. (2.29) 

Thus we are allowed to use time steps which are about 60% larger than those 
allowed by the CFL condition. It should be emphasized that these theoretical 
results were applied successfully to actual hydrodynamical problems. 

In any case it is clear that for 0 < 8 < l/2 and for any Z one can exceed the 
CFL or other condition suitable for the other ranges of B. The explanation for 
these seemingly paradoxical results (i.e., improvement upon CFL) lies in the fact 
that the iterations cause the scheme to be anchored not only on j + 1, j andj - 1 
but on j + Z, j + Z - l,..., j ,..., j - Z + 1, j - 1. In other words, the numerical 
domain of influence has been increased. 
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The iterations converge in the limit I + co to the implicit scheme, i.e., 

w,“” = Wj” + (1 - e> CWj” + 0cw,“+! (2.30) 

The proof, done for the case with locally constant operator, is almost the same as 
that given in Ref. [5]. The important result is that in the range 0 < 0 < 1 the 
stability criterion is more severe. Thus stability of the scheme assures convergence. 

3. APPLICATIONS TO CYLINDRICAL SHOCK WAVES 

3.a The Hydrodynamic Equations 

We are considering a compressible, inviscid, non-heat-conducting polytropic 
fluid. If we assume either slab, cylindrical or spherical symmetry of the flow the 
equations of motion take the following form [8]: 

wt + [wv1, = WK r> (3.1) 
with 

(3.2) 

and 

R = y”-lp; M = r”-lpu e r”-lm; E = r”-lp (CZ + f) = r--le, (3.3) 

where p, U, E, p, t and r are, respectively, the fluid density, particle velocity, internal 
energy per unit mass, pressure, time and the space coordinate of symmetry. Thus 
when 01 = 1 we have slab symmetry and r = x. When (II = 2, 3 we have, 
respectively, cylindrical or spherical symmetry and r is the radius. In (3.2) and 
(3.3) we used the polytropic equation of state p = (r - 1) PE in the form 

p,y--l 
rm-l ( 

M2 
E- 2R 

-) = (y - 1) (e - -$--). (3.4) 

Note that in general the system (3.1) cannot be reduced to a conservation form, 
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and is in a quasi-conservation form. When 01 = 1 it reverts back to a pure conser- 
vation form. 

3.b The Physical Problem 

The physical problem that we shall examine and solve numerically is that 
considered by Payne [4]. A cylindrical diaphragm of radius r, separates the internal 
fluid from the external one; both are at rest. The conditions in the two regions are 
homogeneous and the outer pressure and density are higher than the inner ones. 
The ratio between the initial outer and inner pressure is p* > 1. Similarly p* > 1. 

At t = 0 the diaphragm is removed and a flow begins inward, creating a shock 
wave. The motion of this collapsing cylindrical shock is not uniform and the axis is 
a singular point of the solution. We shall be particularly interested in the collapse 
and rebound motion of the shock. 

Note that givenp* and p* we can determine the temperatures. If we takep* = p* 
then the two initial regions have equal temperatures. Of course in time the tem- 
perature field will also become nonuniform. 

3c. The Dimensionless Equations 

We wish to transform the system (3.1) into a dimensionless form. In order to do 
this we define the following dimensionless (primed) quantities: 

r’ = r/r0 , P’ = PIP0 3 P’ = PIP0 2 2.i = u/u0 ) t’ = t/t, ) (3.5) 

where r, is the diaphragm radius; p. and pO are, respectively, the initial density and 
pressure in the inner region; u, = v’po/po = c0fi where c,, is the initial speed of 
sound in the inner region; and t, = r,/u, . 

Note that unlike Payne we did not take u,, to be c,, . Had we taken u,, = c0 the 
resulting equations would have been similar but not identical to (3.2). As a result 
the Jacobian A’ = aF’/i3W’ would have differed from A so that the stability 
criteria for the primed and unprimed systems would have differed. We elected to 
take u,, = c,/fi thereby causing the new primed system to be identical to (3.2), 
preserving thusly the matrix A, its eigenvalues and hence the stability condition. 

To summarize, we shall use a dimensionless sytem which, after dropping the 
primes for convenience’ sake, is identical to (3. I) and (3.2). 

For the various stability criteria that are developed we need the spectral radius 
of A, i.e., we need to know the eigenvalues. It can be shown that the eigenvalues of 
A are U, u & c where c = d/yp/p is the speed of sound. Thus p(A) = 1 u j + c. In 
practice therefore we took At, = (Ox){z(ti, Z)/[max$ (1 ujn 1 + cj”)]}. 

3d. Initial Conditions 

The initial conditions refer to the dimensionless scheme in which the diaphragm 
radius is 1. The internal initial pressure and density are also 1, i.e., p,, = p,, = 1. 



10 ABARBANEL AND GOLDBERG 

If we designate the radius by 1 = Kdx, where dx is the spatial mesh size, we put 

u.0 = 0 3 vi ; 
(3.6) 

pi0 = pjo = 1 j < K, pjo = p* and Pi0 = p*, j > K. 

Even though we have not yet defined pKo, pKO we can still, from (3.3) and the equa- 
tion of state, write down 

Rjo = rjpjo; A4jo = 0; ~jo - rjPjo ; 
Y-1 

vj . (3.7) 

We can thus evaluate RjO, Mp and Ep explicitly for all j except for j = K. At 
j = K we shall define pKo and pRO in such a way that the resulting EKo and RKo are 
the arithmetic mean of Ejo and Rio for j = K 5 1, thus we find 

PKO = f cp* + 1) + + cp* - 11, (3.8) 

pg = ; (p* + 1) + $ (p* - 1). (3.9) 

3e. Domaira of Solution and Boundary Conditions on the Outside 

The problem as defined above is actually in the semiinfinite domain 0 < r < 03. 
In practice, however, one must specify a finite domain. It turns out that if the outer 
boundary is taken at twice the diaphragm radius (i.e., 0 < r < 2) then at r = 2 
there is very small effect due to the shock collapsing and rebounding from the axis 
up to the time the rebounding shock returns to the diaphragm location. 

Having defined the domain of calculation we have to specify the conditions on 
r = 2 for u,p,p, R, M, E. Thus, going from the n-th to the (n + I)-st time 
step we must specify, for example, E.$& . However El” must be computed using 
E& and E&&l . Thus, in the case of the explicit scheme, if we have 1 iterations 
we must use E&, E&*1 , E211Kf2 ,..., E.& . The values for j > 2K must be obtained 
by extrapolation. Using Lagrange interpolation of second order the value of a 
variable c at (2K + 1, n) is given by 

5 2nK+l = GK-2 - 3&-1 i- 35% 2 (3.10) 

where 1 can be either u, p or p. Using previous definitions and the equation of state 
we also find 

(3.11) 

E” 2K+1 = ___ 
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Note that at t = 0 (n = 0) the L.H.S. of (3.10) and (3.11) take the proper values 
given by (3.6) and (3.7). 

3f. Boundary Conditions on the Axis 

While for the outer boundary (r = 2) the parabolic extrapolition sufficed, the 
situation at the axis is more complicated. First it is clear that the following is true 
atr = 0: 

uo “=O , 

Ron = [rp,%.=, = 0, 

Mon = ROnuOn = 0 7 (3.12) 

Eon = 
[ 

r A] 
Y - 1 r=o 

+ ; MOT40n = 0. 

In addition, we’ll need the quantities p, p and E/R at the axis. All these three 
quantities formally are of the form y0 at the axis. In order to compute them we 
first thought of a simple extrapolation from r = dx, 2dx, 3dx to r = 0. This 
method failed; this is so because as the shock nears the axis we get very high 
gradients at that region and the smoothness required for a valid extrapolation is not 
available. We tried another method which was successful. We present it herein2: 

Consider the hydrodynamic equation of continuity in its integral form 

(3.13) 

where S’(t) is a surface which at time t encloses a volume V(t). If S(t) describes a 
right cylinder of radius ri = idx and height h, and if the flow has cylindrical 
symmetry, i.e., u = +U where r^ is the radial unit vector then we can rewrite (3.13) 
as 

a 
s 

Tt2 - 
at 0 p(dtf, t) dt + 2rip(ri , t) u(r, , t) = 0, 

where [ = r2. We shall evaluate the integral in such a way that ~(0, t) will appear 
explicitly. Evaluating the integral in (3.14) with the trapezoidal method, we have 

s Tie 
PC& 0 d5 w HPKJ t) + p(ri , t>l(ri2 - 0) = Hp(O, t) + p(ri , t)] ri2 o 

and the error, assuming the integrand to be C2[0, rt], is O[(r#‘], i.e., O(r,? which 

2 Payne [4] had the same starting point. We were unable, however, to reproduce his formulation. 
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is more than sufficient for our purposes if ri = O(dx). Indeed, taking ri = Ax 
Eq. (3.14) becomes 

a 1 - I- [p(O, t> + p@x, wx)‘j + 2dx &k t> Gk t> = 0. at 2 (3.15) 

The numerical estimate of a/at [p(O, t)] and a/at[p(Ax, t)] can be centered either 
around nAt or (ra + 3) At. In both cases the error is of O(At2). However, in the 
first case we will have p:+l depending on pt-’ while in the second case pi+l will 
depend on pan. Since we may expect at the time of the shock coalescence strong 
timewise gradients it is preferable to rely on information which is as “late” as 
possible. We thus get, centering all of (3.15) around (n + 4) At, 

; KPE" 
W2 - fan) + M” - PI”)1 yjj- + v (p1” + p;“)(ul” + u:+q = 0 

or 

/$+1 Y.rz Pan + Pin - PI1+l - 4pln + pl"+wl" + 4"). (3.16) 

In order to evaluate the energy on the axis consider the integral form of the energy 
equation 

a 
4 at edV+ 

V(t) f S(t) (e + P)(U * W = 0. (3.17) 

Using the same development as the one that follows (3.13) we finally obtain 

nil e, = e, n + ela - ey” - h(e,” + e;+l + pin + py+‘)(u,” + uy+‘). (3.18) 

From (3.16) and (3.18) we can find (E/R),“+’ = (e/p):” andp,“+l = (y - 1) ei+‘. 
It should be remarked that we also tried integration formulas more elaborate 

than the trapezoidal method. No significant improvement in the actual numerical 
results was found. 

Until the shock converges upon the axis u(Ax, t) < 0. Since z+,% = 0 for all IZ 
we shall say that the shock reached r = 0 at t, = CEcl At, , where (n + 1) is the 
first natural number for which ,;+I > 0. 

3g. Numerical Results 

3g. 1 General Remarks 

The numerical results are presented graphically in Figs. l-9. Figure 1 is the 
pressure distribution at various times as predicted by the explicit Lax-Wendroff 
scheme. Figure 2 shows the results of using the internal iterative scheme. The rest 
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FIG. 1. Pressure vs radius (Explicit Scheme), given for approximately every 0.2 time units; 
y = 1.4, p* = p* = 4, K = 100 (Ax = l/K = 1O-2). 
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FIG. 2. Pressure vs radius (Internal Iterative Scheme), given for approximately every 0.2 
time units; y = 1.4,p* = p* = 4, K = 100, 0 = 0.5, I = 2 (1 iteration). 
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FIG. 3. Pressure vs radius (External Iterative Scheme), given for approximately every 0.2 
time units; y = 1.4,p* = p* = 4, K = 100, 13 = 0.2, I = 2. 

FIG. 4. Density vs radius (External Iterative Scheme), given for approximately every 0.2 
time units; all parameters and exact times are the same as in Fig. 3. 
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FIG. 5. Velocity vs radius (External Iterative Scheme), given for approximately every 0.2 
time units; all parameters and exact times are the same as in Fig. 3. 
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RG. 6. Pressure vs radius for times near shock convergence into axis (External Iterative 
Scheme); y = 1.4,p* = p* = 4, K = 100, I = 2, 0 = 1.0. 
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FIG. 7. Density vs radius for time near shock convergence unto axis (External Iterative 
Scheme); all parameters and exact times are the same as in Figure 6. 

FIG. 8. Velocity vs radius for time near shock convergence unto axis (External Iterative 
Scheme); all parameters and exact times are the same as in Figure 6. 
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FIG. 9. Velocity vs radius (External Iterative Scheme); given for approximately every 0.2 time 
units; y = 1&p* = p* = 10, K = 200;0 = 0.3;1 = 2. 

are for the external iterative schemes for various values of 8, K = l/Ax, p* and p*; 
in all of them y = 1.4 and 1 = 2. 

It was found that in general the overall trend of the results agrees with those 
given by Payne [4]. There are, however, some major differences, such as for example, 
the time for the shock to reach the axis. A more detailed comparison will be given 
later. 

3g. 2 Dependence of the Numerical Results on the Various Schemes and Para- 
meters 

In addition to the physical character and significance of the results (which 
Payne [4] discusses at length) it is desirable to consider several points which bear 
upon the sensitivity of the results to, and their dependence on, the various methods 
of calculation, the magnitude of the controlling parameters, etc. These points are 
worthwhile considering because they are of importance not only for the specific 
physical physical problem solved here but also for other problems which may be 
attacked using similar methods. 

(i) The dQ$erence schemes. In Section 2 we talked about three difference schemes 
given by Eqs. (2.4), (2.15) and (2.17). The explicit Lax-Wendroff-like scheme, (2.4), 
is found to contain many numerical oscillations which are much more detrimental 
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than in the slab symmetry case, especially as the shock converges towards the 
center; see Fig. 1. We abandoned the use of this explicit scheme. 

It remains to compare the two iterative schemes-the external and internal ones, 
Eqs. (2.15) and (2.17), respectively. When 0 = 1, the two schemes are identical. 
When 0 < I the external scheme yielded much smoother results. This is particularly 
so when f? < l/2 where the internal scheme gave worse results than the explicit one. 
We then checked this phenomenon in the slab symmetry case (# = 0) for 8 = 0.2 
and B = 0.3 and found the external scheme to yield good smooth results while the 
internal scheme led to nonlinear instabilities. 

Another major difference between the two iterative schemes is the predicted time 
for the shock to reach the axis (convergence time = tJ. First, the external iterative 
scheme, for given initial conditions, predicted the same convergence time, to 
within 2%, for all 0’s and all l’s (number of iterations). On the other hand, the 
internal scheme gave widely different tc’s for different B’s, all of them being lower 
than the ones predicted by the external scheme. Of course, when 0 = 1 they both 
give the same result which also agrees with the convergence time predicted by the 
explicit Lax-Wendroff scheme. It is well known that while Lax-Wendroff-like 
schemes produce post-shock oscillations they do predict the correct shock speed. 
As an illustration of the differences among the methods consider the case of 
p*=p*=4,yz 1.4, K = 100: the time to reach the axis as given by the explicit 
scheme or the external iterative one, for all 8, is t, = 0.57; on the other hand, the 
internal iterative scheme predicts t, = 0.38 for 0 = 0.5 and t, = 0.46 for 0 = 0.2. 

In view of all that is said above we decided to concentrate on utilizing the 
external scheme [Eq. (2.15)]. 

(ii) Stability condition. The actual stability criteria turned out in practice to be 
the theoretical ones given in Section 2 with the equality sign taken rather than the 
inequality. If the time steps exceed the maximum allowed by the linear theory then 
strong linear instabilities appear. Reducing the time step does not serve any 
purpose; on the contrary, if At is too small, weak (nonlinear) instabilities occur, 
confirming the same phenomenon as observed by Richmyer and Morton in the 
slab-symmetry case [8]. 

(iii) EfJicacy of the external scheme vis-a-vis diflerent initial conditions and the 
parameters I, y, K and 8. The numerical results covered the following ranges of 
initial conditions: weak shock @* = p* = 1.5); intermediate-strength shock 
(p* = p* = 4); and strong shock (p* = p* = 10). In all cases we used both 
y = 1.4 and y = 3. The values of 8 tested were 0.2,0.3, 0.5, 0.75, 1.0 and 1.5. The 
mesh size was taken to be: K = 50, 100,200 and 400. Various numbers of iteration 
I were tried. 

As expected the post-shock oscillations were more problematical the stronger 
the shock. 
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A general observation of importance is that one iteration (I = 2) suffices to 
smooth out the numerical noise. As a matter of fact increasing 1 causes in the very 
beginning, worsening of the phenomenon which, however, is damped out very 
rapidly with time. As a result the numerical solution for I > 2 looks the same as 
for 1 = 2. Thus it is possible to save computer time by using 1 = 2. 

Another interesting phenomenon is the fact that as 8 increases toward 1,3 the 
numerical system becomes more dissipative in the following sense: The shock 
waves are spread over a larger number of cells and the local extrema of the pressure, 
velocity and density profiles become less pronounced. When the shock is away 
from the axis these differences are very small; as the shock converges to r = 0 the 
resulting differences are significant. For an illustrative example, see Table I in which 
we list the maximum values of pressure and density for the case p* = p* = 4, 
y = 1.4, K = 100 at two times: t = t, - 0.57 (time when shock converges upon 
the axis) and t - 1, at which time the rebounding shock has diverged from the 
axis and is a considerable distance out (in all cases 1 = 2; i.e., one iteration): 

TABLE I 

Maximum Values of Pressure and Density 

r. = 0 t - 0.57 r, - 0.62 t - 1.0 
p* = p* = 4 

e = 1.0 e = 0.5 e = 0.2 e = 1.0 e = 0.5 e=o.2 K=IOO y=1.4 1=2 

11.9258 16.5811 27.6607 5.8405 5.9271 5.9872 PlX%X 
5.6085 7.0540 9.7167 5.1376 5.2745 5.3622 Pl!X+X 

a Conditions: p* = p* = 4, y = 1.4, K = 100 at t = t, - 0.57; t - 1. 

As we remarked, as 8 increases the results are more dissipative in the above 
sense. Since increasing 8 means giving more weight to the iterative member of the 
scheme (2.15), we deduce that it is indeed the iterations that cause the dissipation. 
At the same time it must be emphasized that this kind of dissipation does not imply 
a smoother profile near the shock. On the contrary, smaller 0’s yield results with 
less numerical noise. A plausible explanation for this seeming “paradox” is the 
following: The iterative and noniterative terms of the finite difference scheme have, 
respectively, the weights of 19 and 1 - 8. The numerical domain of dependence of 
the iterative term, for I = 2, is 4Ljx while for the noniterative terms it is 2dx. 

s When 0 > 1, say 0 = 1.5, we encountered very strong oscillations in the regions of large 
gradients. 
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Thus the “weighted-average” of the two is 

!9(4Ax) + (1 - @(tix) = (1 + e) 2dx. (3.19) 

Let us recall now that the stability criterion for 1 = 2 and 0.17 = e,(2) < t9 < 3 
is dt < Ox/lp(&&?] f rom which we deduce that the numerical domain of 
dependence necessary for stability is 2(Ax/d%).* Now if the “weighted-average” 
domain [Eq. (3.19)] indeed represents the “actual” domain of dependence then we 
must require it, for reasons of stability, to be smaller than ~(Ax/v%). Hence we 
have the inequality 

2(1 + 0) Ax < 20x/d%?. (3.20) 

On the other hand, we would like to maximize the time step (for the reasons 
mentioned in Section 3g.2 (ii)). This implies that in (3.20) we must choose the 
equality sign and we get 

d28 (1 + e) = 1. (3.21) 

The solution of (3.21) is 0 = 0.299 = 0.3 and indeed 8 = 0.3 gives the smoothest 
results, particularly in the cases of strong shocks ( p* = p* = 10). 

The last point to be checked is that concerning the effect of mesh size. As K 
increases (K = l/Ax), the post-shock oscillations become smaller. Since the shock 
is spread on the same number of cells the shock profile in the physical coordinates 
is much steeper for larger K. Values at the axis at the time of shock convergence 
increase with K-this is to be expected because the hydrodynamic variables behave 
as l/Ax near r = 0. However, qualitatively the results near the axis are the same 
for all K 3 50 while away from r = 0 the results are almost independent of K 
(within the limits of accuracy desired). 

(iv) Comparison with previous results. As indicated in Section 3g.l the general 
trend of the results agrees with those given by Payne [4], but we mentioned the 
different arrival time of the shock at the axis. Thus while we predict, based on both 
the Lax-Wendroff and the iterative scheme, t, w 0.57 for p* = p* = 4 and 
y = 1.4, Fig. 1 in Ref. [4] indicates a convergence time of 0.66. There are other 
differences which might be summarized as follows: the shock locations at various 
times and the extremum hydrodynamic values associated with them, are self- 
consistent when predicted by our external iterative scheme for all values of 0, K 
(mesh size) and I (number of iterations). They do, however, differ markedly from 
the results given in Ref. [4]. 

4 The slope of the one sided domain of dependence is indeed l/p(A) = l/ 1 u 1 + c = 
df/(dx/ d/ze). However, the numerical domain of dependence is symmetric and is twice (Ax/ a). 
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